Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

Issue Date 2018-June-14

Issued to: Huawei Technologies Co., Ltd.

Administration Building

Headquarters of Huawei Technologies Co., Ltd.

Bantian, Longgang District

Shenzhen

Guangdong 518129 CHINA

This is to certify that Photovolic Grid Support Utility Interactive Inverter

representative samples of Models SUN2000-7.6KTL-USL0, SUN2000-5KTL-USL0, SUN2000-

3.8KTL-USL0

Have been investigated by UL in accordance with the

Standard(s) indicated on this Certificate.

Standard(s) for Safety: UL 1741, Standard for Safety for Inverters, Converters, Controllers

and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, Second Edition, dated January 28, 2010. Including the requirements in UL 1741 Supplement SA,

sections as noted in the Technical considerations.

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources

with Electric Power Systems.

IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric

Power Systems.

UL 62109-1, Safety of Converters for Use in Photovoltaic Power Systems - Part 1: General Requirements; IEC 62109-2, Safety of Power Converters for use in Photovoltaic Power Systems - Part 2:

Particular Requirements for Inverters.

CSA C22.2 No. 107.1-16, General Use Power Supplies.

Additional Information: See the UL Online Certifications Directory at

www.ul.com/database for additional information

Only those products bearing the UL Certification Mark should be considered as being covered by UL's Certification and Follow-Up Service.

Look for the UL Certification Mark on the product.

Bamely

Bruce Mahrenholz, Director North American Certification Program

UL LLC

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

Issue Date 2018-June-14

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements.

Standards for Safety:

UL 1741, Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, Second Edition, dated January 28, 2010. Including the requirements in UL 1741 Supplement SA, sections as noted in the Technical considerations.

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.
IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.

UL 62109-1, Safety of Converters for Use in Photovoltaic Power Systems - Part 1: General Requirements.

CSA C22.2 No. 107.1-16, General Use Power Supplies.

Bruce Mahrenholz, Director North American Certification Program

UL LLC

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, pleas contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/

(II)

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

Components covered by this certificate provide functionality in compliance with UL 1741 Supplement A (SA) when used in a UL Listed end product which has been evaluated by UL for it's intended purpose. Compliance testing was conducted on samples of the products according to the test methods in the following sections of UL 1741 with compliant results:

Certified functions. Cross Reference table – UL 1741 SA to SRD	Source Requirement Document(s)	Test Standard(s) and Section(s)	Report Date
ANTI-ISLANDING PROTECTION - UNINTENTIONAL ISLANDING WITH GRID SUPPORT FUNCTIONS ENABLED	Electric Rule No. 21 Hh.1a	UL 1741 SA 8	2018-May-11
LOW/HIGH VOLTAGE RIDE THROUGH	Electric Rule No. 21 Table Hh.1	UL 1741 SA 9	2018-May-11
LOW/HIGH FREQUENCY RIDE THROUGH	Electric Rule No. 21 Table Hh.2	UL 1741 SA10	2018-May-11
RAMP RATES	Electric Rule No. 21 Table Hh.2k	UL 1741 SA 11	2018-May-11
RECONNECT BY "SOFT START"	Electric Rule No. 21 Hh.2k	UL 1741 SA 11	2018-May-11
SPECIFIED POWER FACTOR	Electric Rule No. 21 Hh.2i	UL 1741 SA 12	2018-May-11
DYNAMIC VOLT/VAR OPERATIONS	Electric Rule No. 21 Hh.2J	UL 1741 SA 13	2018-May-11
FREQUENCY-WATT	Electric Rule No. 21 Hh.2.L	UL 1741 SA 14	2018-May-11
VOLT-WATT	Electric Rule No. 21 Hh.2.m	UL 1741 SA 15	2018-May-11

Testing conducted to the requirements of UL 1741 SA corresponds to the minimum requirements for CA Rule 21, 2015. An enumeration of functions tested, including complete ratings, and available certified settings for the Grid Support functions, are recorded in the appendix to this document. Test data and detailed results of compliance testing are retained in the complete UL Report for this product.

Bruce Mahrenholz, Director North American Certification Program

UL LLC

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, pleas contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/

(U)

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

<u>Appendix</u>

Detailed Testing Summary	Test Standard(s) and Section(s)	Fixed / Adjustable	Pass / Fail	
UNINTENTIONAL ISLANDING WITH GRID SUPPORT FUNCTIONS ENABLED	UL 1741 SA 8	Adjustable	Pass	
HIGH VOLTAGE RIDE-THROUGH DURATION	UL 1741 SA 9.1	Adjustable	Pass	
HIGH VOLTAGE RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA 9.2	Adjustable	Pass	
HIGH VOLTAGE MUST TRIP CLEARING TIMES	UL 1741 SA 9.2	Adjustable	Pass	
LOW VOLTAGE RIDE-THROUGH DURATION	UL 1741 SA 9.1	Adjustable	Pass	
LOW VOLTAGE RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA 9.2	Adjustable	Pass	
LOW VOLTAGE MUST TRIP CLEARING TIMES	UL 1741 SA 9.2	Adjustable	Pass	
HIGH FREQUENCY RIDE-THROUGH DURATION	UL 1741 SA10.1	Adjustable	Pass	
HIGH FREQUENCY RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA10.2	Adjustable	Pass	
HIGH FREQUENCY MUST TRIP CLEARING TIMES	UL 1741 SA10.2	Adjustable	Pass	
LOW FREQUENCY RIDE-THROUGH DURATION	UL 1741 SA10.1	Adjustable	Pass	
LOW FREQUENCY RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA10.2	Adjustable	Pass	
LOW FREQUENCY MUST TRIP CLEARING TIMES	UL 1741 SA10.2	Adjustable	Pass	
NORMAL RAMP RATE	UL 1741 SA 11.2	Adjustable	Pass	
"SOFT START" RAMP RATE	UL 1741 SA 11.4	Adjustable	Pass	
SPECIFIED POWER FACTOR	UL 1741 SA 12	Adjustable	Pass	
VOLT/VAR MODE (Q(V))	UL 1741 SA 13	Adjustable	Pass	
FREQUENCY-WATT (FW)	UL 1741 SA 14	Adjustable	Pass	
VOLT-WATT (VW)	UL 1741 SA 15	Adjustable	Pass	

Bruce Mahrenholz, Director North American Certification Program

UL LLC

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

UL 1998 (grid support)	Date	Version/Revision
Yes	2018-01-04	V100R001D00

Inverter Ratings - Output	SUN2000-7.6KTL-USL0		
Output phase configuration	Split phase	Split phase	
Nominal (line to line) output voltage V ac	208 V	240 V	
Operating voltage range V ac	184-220 V	212-254 V	
Normal out frequency Hz	60 Hz	60 Hz	
Rated output current (A ac)	31.7 A	31.7 A	
Rated output power, (kW)	6.6 kVA	7.6 kVA	
Max. Branch Circuit overcurrent protection (A ac)	40 A	40 A	
Maximum Air Ambient (°C)	60 °C	60 °C	

Inverter Ratings - Output	SUN2000-5KTL-USL0		
Output phase configuration	Single phase	Split phase	
Nominal (line to line) output voltage V ac	208 V	240 V	
Operating voltage range V ac	184-220 V	212-254 V	
Normal out frequency Hz	60 Hz	60 Hz	
Rated output current (A ac)	20.9 A	20.9 A	
Rated output power, (kW)	4.3 kVA	5.0 kVA	
Max. Branch Circuit overcurrent protection (A ac)	25 A	25 A	
Maximum Air Ambient (°C)	60 °C	60 °C	

Inverter Ratings - Output	SUN2000-3.8KTL-USL0		
Output phase configuration	Single phase	Split phase	
Nominal (line to line) output voltage V ac	208 V	240 V	
Operating voltage range V ac	184-220 V	212-254 V	
Normal out frequency Hz	60 Hz	60 Hz	
Rated output current (A ac)	15.9 A	15.9 A	
Rated output power, (kW)	3.3 kVA	3.8 kVA	
Max. Branch Circuit overcurrent protection (A ac)	20 A	20 A	
Maximum Air Ambient (°C)	60 °C	60 °C	

Bruce Mahrenholz, Director North American Certification Program

UL LLC

Certificate Number 20180511-E479199 **Report Reference** E479199-20180511 **Issue Date** 2018-June-14

Other ratings:	
Max. output fault current (A) / duration (ms)	49Arms,192Apk for 21ms
Max. utility backfeed current to PV input (A)	59Arms,155Apk for 9ms
Line Synchronization Characteristics / In-rush current	Method 2 / 2.7 Arms
Limits of accuracy of voltage measurement	+/- 1 % (of Volts nominal)
Limits of accuracy of frequency measurement	+ /- 0.02 Hz
Manufacturers stated accuracy of time response for voltage trips	1% + 50ms
Manufacturers stated accuracy of time response for frequency trips	1% + 50ms
Enclosure Ratings	IP 65; Type 4X

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

INTERCONNECTION INTEGRITY TEST CATEGORIES:	LASLASLASLASLA
C62.42.2 Ring Wave Surge Category	Catagory B (6kV, 500A)
C62.42.2 Combination Wave Surge Category	Catagory B (6kV, 3kA)
C37.90.1 RF Immunity - compliance	Yes
C37.90.2 Communication circuit - compliance	Yes

Nominal voltage			Single / S	plit phase		
UL 1741 SA9:		itudes ominal)		hrough nds) (+)		t Trip onds)
Boundary designation (++)	Min	Max	Min	Max	Min	Max
HV3	N/A	N/A	N/A	N/A	N/A	N/A
HV2	110 %	120 %	N/A	N/A	0.16	0.16
HV1	110 %	120 %	0.92	12.0	1.0	13.0
LV1	50 %	88 %	20.0	49.0	21.0	50.0
LV2	50 %	88 %	10.0	49.0	11.0	50.0
LV3	50 %	50 %	0.32	0.42	0.5	21.0

Nominal Frequency:	60 Hz					
UL 1741 SA10:		itudes uency)		hrough nds) (+)		st Trip conds)
Boundary designation	Min	Max	Min	Max	Min	Max
HF3	N/A	N/A	N/A	N/A	N/A	N/A
HF2	62.0	66.0	N/A	N/A	0.16	1000.0
HF1	60.1	66.0	1.0	999.0	2.0	1000.0
LF1	50.0	59.9	1.0	999.0	2	1000.0
LF2	50.0	57.0	N/A	N/A	0.16	1000.0
LF3	N/A	N/A	N/A	N/A	N/A	N/A

Bruce Mahrenholz, Director North American Certification Program

UL LLC

20180511-E479199 **Certificate Number** E479199-20180511 **Report Reference Issue Date** 2018-June-14

SA11 Ramp Rate test ratings (RR/SSRR)		
Minimum normal ramp-up rate	1.0 %	%Irated/SEC
Maximum normal ramp-up rate	100 %	%Irated/SEC
Minimum soft start ramp-up rate	0.1 %	%Irated /SEC
Maximum soft start ramp-up rate	100 %	%Irated /SEC

SA12 SPF Specified Power Factor (INV3)	VAIVAIVAIVA
Minimum Inductive (Underexcited) Power Factor (<0)	- 0.8
Minimum Capacitive (Overexcited) Power Factor (>0)	+ 0.8

SA13 Volt/Var Mode (VV) extent of curve range settings Model: SUN2000-7.6KTL-USL0 240V						
Settings		Qmax Values - Maximums	Qmin Values - Minimums	Units		
Reactive power production setting	Q_1	4560	0	VAR		
Reactive power absorption setting at the left edge of the deadband	Q ₂	4560	-4560	VAR		
Reactive power absorption setting at the right edge of the deadband	Q ₃	4560	-4560	VAR		
Reactive power absorption setting	Q ₄	O L	-4560	VAR		

SA13 Volt/Var Mode (VV) extent of curve ra	inge setting:	5 Model. SUNZOO	-7.0K1L-03L0 200	V
Settings		Qmax Values - Maximums	Qmin Values - Minimums	Units
Reactive power production setting	Q ₁	3960	0	VAR
Reactive power absorption setting at the left edge of the deadband	Q ₂	3960	-3960	VAR
Reactive power absorption setting at the right edge of the deadband	Q_3	3960	-3960	VAR
Reactive power absorption setting	Q ₄	0	-3960	VAR

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

SA13 Volt/Var Mode (VV) extent of curve range settings Model: SUN2000-5KTL-USL0 240V						
Settings		Qmax Values - Maximums	Qmin Values - Minimums	Units		
Reactive power production setting	Q_1	3000	0	VAR		
Reactive power absorption setting at the left edge of the deadband	Q_2	3000	-3000	VAR		
Reactive power absorption setting at the right edge of the deadband	Q_3	3000	-3000	VAR		
Reactive power absorption setting	Q ₄	0	-3000	VAR		

SA13 Volt/Var Mode (VV) extent of curve range settings Model: SUN2000-5KTL-USL0 208V						
Settings		Qmax Values - Maximums	Qmin Values - Minimums	Units		
Reactive power production setting	Q ₁	2580	0	VAR		
Reactive power absorption setting at the left edge of the deadband	Q ₂	2580	-2580	VAR		
Reactive power absorption setting at the right edge of the deadband	Q ₃	2580	-2580	VAR		
Reactive power absorption setting	Q ₄		-2580	VAR		

SA13 Volt/Var Mode (VV) extent of curve range settings Settings		Qmax Values - Maximums	Qmin Values - Minimums	Units
Reactive power production setting	Q ₁	2280	0	VAR
Reactive power absorption setting at the left edge of the deadband	Q ₂	2280	-2280	VAR
Reactive power absorption setting at the right edge of the deadband	Q_3	2280	-2280	VAR
Reactive power absorption setting	Q ₄	0	-2280	VAR

Bruce Mahrenholz, Director North American Certification Program

UL LLC

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

SA13 Volt/Var Mode (VV) extent of curve range settings Model: SUN2000-3.8KTL-USL0 208V						
Settings		Qmax Values - Maximums	Qmin Values - Minimums	Units		
Reactive power production setting	Q ₁	1980		VAR		
Reactive power absorption setting at the left edge of the deadband	Q ₂	1980	-1980	VAR		
Reactive power absorption setting at the right edge of the deadband	Q ₃	1980	-1980	VAR		
Reactive power absorption setting	Q ₄	0	-1980	VAR		

Settings	$\chi_{\Omega}(\Gamma)(\Gamma)$	Maximum	Minimum	Units
The voltage at Q ₁	V ₁	103 %	82 %	%Vnom
The voltage at Q ₂	V ₂	105 %	92 %	%Vnom
The voltage at Q ₃	V ₃	108 %	95 %	%Vnom
The voltage at Q ₄	V ₄	118 %	97 %	%Vnom

SA14 Frequency-Watt (FW) extent of curve range settings						
Settings	Frequ	uency	Pov	ver level		
Low end of the adjustment range of the start of the curtailment function	F _{start_min}	60.017	100 %	%Watts		
High end of the adjustment range of the start of the curtailment function	F _{start_max}	65.0	100 %	%Watts		
Frequency droop	kof	0.02	0.1	fPU/(WPU change)		

SA15 Volt-Watt (VW) extent of curve range settings

Bruce Mahrenholz, Director North American Certification Program

UL LLC

 Certificate Number
 20180511-E479199

 Report Reference
 E479199-20180511

 Issue Date
 2018-June-14

Settings		Volts		Power level	
Low end of the adjustment range of the start of the curtailment function	V _{start_min}	105 %	100%	%Watts	
High end of the adjustment range of the start of the curtailment function	V _{start_max}	109 %	100 %	%Watts	
Low end of the adjustment range of the endpoint of the curtailment function	V _{stop_min}	106%	0 %	%Watts	
High end of the adjustment range of the endpoint of the curtailment function	V _{stop_max}	110 %	0 %	%Watts	

Bay HLLL

Bruce Mahrenholz, Director North American Certification Program

UL LLC

